Image Splicing Localization using a Multi-task Fully Convolutional Network (MFCN)
نویسندگان
چکیده
In this work, we propose a technique that utilizes a fully convolutional network (FCN) to localize image splicing attacks. We first evaluated a single-task FCN (SFCN) trained only on the surface label. Although the SFCN is shown to provide superior performance over existing methods, it still provides a coarse localization output in certain cases. Therefore, we propose the use of a multi-task FCN (MFCN) that utilizes two output branches for multi-task learning. One branch is used to learn the surface label, while the other branch is used to learn the edge or boundary of the spliced region. We trained the networks using the CASIA v2.0 dataset, and tested the trained models on the CASIA v1.0, Columbia Uncompressed, Carvalho, and the DARPA/NIST Nimble Challenge 2016 SCI datasets. Experiments show that the SFCN and MFCN outperform existing splicing localization algorithms, and that the MFCN can achieve finer localization than the SFCN.
منابع مشابه
A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملDeep Matching and Validation Network
Image splicing is a very common image manipulation technique that is sometimes used for malicious purposes. A splicing detection and localization algorithm usually takes an input image and produces a binary decision indicating whether the input image has been manipulated, and also a segmentation mask that corresponds to the spliced region. Most existing splicing detection and localization pipel...
متن کاملMRIM-LIG at ImageCLEF 2016 Scalable Concept Image Annotation Task
This paper describes the participation of the the MRIM research Group of the LIG laboratory in the ImageCLEF scalable concept image annotation subtask 1. We made use of a classical framework to annotate the 500K images of this task: we tuned an existing Convolutional Neural Network model to learn the 251 concepts and to locate bounding boxes of such concepts, and we applied a specific process t...
متن کاملAn efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Visual Communication and Image Representation
دوره 51 شماره
صفحات -
تاریخ انتشار 2018